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Abstract

In Multi-Protocol Label Switching (MPLS) networks, traffic demands can be routed along tunnels called Label
Switched Paths (LSPs). A tunnel is characterized by a path in the network and a reserved bandwidth. These tunnels
can be created and deleted dynamically, depending on traffic demand arrivals or departures. After several operations of
this type, the network resource utilization can be unsatisfactory, with congestion or too long routing paths for instance.
One way to improve it is to reroute tunnels; the rerouting process depends on the LSP Quality of Service (QoS)
requirements.

Three levels of QoS are considered, with three associated types of LSPs. A global rerouting framework is proposed,
which enables us to consider independently each type of LSP. Then, mathematical models are introduced and analyzed.
A focus is made on complexity analysis and optimal resolution of these problems. Finally, some numerical results illustrate
the theoretical analysis.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In Multi-Protocol Label Switching (MPLS) networks, traffic demands can be routed along tunnels called
Label Switched Paths (LSPs) [2,3]. An LSP corresponds to a path in the network with bandwidth reserved.
Depending on traffic demand arrivals, LSPs can be dynamically created to route them. Similarly, traffic
demand departures can lead to removing some LSPs from the network. After several creations/deletions of
LSPs, the network resource utilization can become very unsatisfactory. This can hardly be avoided, since
future events are not known when establishing an LSP.

A way to improve the situation at a given time is to reroute the existing LSPs into a better global config-
uration. This rerouting process is performed ‘‘off-line’’ during a quiet period when the network state is stable.
Different levels of quality of service (QoS) have to be considered, depending on the services supported by an
LSP. Thus, the rerouting plan has to take into account these QoS differences. Indeed, there exist different ways
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of rerouting LSPs, which have different effects on the traffic. Three different classes of service are considered in
this paper, with high, medium and low QoS. Low quality LSPs can be broken and re-established afterwards.
Thus, the service is unavailable for possibly a few seconds. A medium level corresponds to the possibility of
rerouting the LSPs, but through a ‘‘make-before-break’’ process (see [2]): first, a new LSP is established, and
then, the old one can be deleted. In practice, this process has little impact on the communication quality, and
can induce some packet losses. The highest QoS level requires that the corresponding LSPs cannot be moved
at all.

In [9–11], the authors have proposed a first approach to this rerouting issue, considering only medium class
LSPs. They study the problem the following way: knowing the current (old) configuration and the optimal
(new) one, they look for a feasible rerouting sequence. Each LSP is rerouted only once, i.e. no intermediate
path is used. This approach emphasizes the optimality of the final routing which is calculated from scratch.
However, it may be necessary to break a few connections to be able to reach this target. Conditions on capac-
ities in the network are given to ensure the existence of a rerouting sequence without connection breaking. This
previous work has not taken into account the different classes of service which could exist in such a network.
Moreover, even when considering only medium class LSPs, the proposed method is not totally satisfactory.
On the one hand, the LSPs are allowed to be possibly broken. On the other hand, the number of reroutings
to perform is possibly equal to the number of LSPs in the network. This number can be large, implying some
complexity in the network management.

In the current paper, a complementary approach is proposed. The emphasis is put on fulfilling the different
levels of quality of service. In particular, medium quality LSPs cannot be broken. With this constraint, we try
to obtain the best possible state. Moreover, the maximum number of reroutings can be controlled, the goal
being to keep network management as easy as possible and to minimize the service disturbances. The problem
addressed has many connections with that of [1], where a rerouting problem is studied with the aim to improve
a telecommunication network state. The authors assume that each path in the network is assigned a usage
cost, and heuristics are designed to find a rerouting sequence which leads to a small global network cost.
But such a fixed path cost can hardly model QoS issues such as those considered in the current study. More-
over, we focus on exact solution procedures to find optimal solutions.

Finally, such rerouting problems occur in fields other than telecommunications. The recent work of [17]
deals with moving processes from their initial processor to another one in order to improve the computation
resource utilization. This problem is in fact a special case of that exposed in [9–11]. This paper presents in par-
ticular a good review of the related literature, which shows that similar problems have in fact quite rarely been
studied in the past.

In Section 2, a global rerouting framework is proposed, which enables us to consider independently the dif-
ferent classes of QoS. Section 3 deals with medium quality LSP rerouting, while low quality LSPs are studied
in Section 4. In both sections, mathematical models are established and optimal resolution is more particularly
investigated. Section 5 provides some numerical results.

Note that only point-to-point (P2P) LSPs are dealt with; the problem is more difficult for point-to-multi-
points ones (P2MP). Finally, in MPLS networks, several traffic demands can use the same LSP. Nevertheless,
from now on, without loss of generality for our study, the words ‘‘demand’’, ‘‘tunnel’’ and ‘‘LSP’’ will denote
the same thing.

2. General framework of the study

2.1. Network model and notations

Let G ¼ ðV ;AÞ be the graph of the network, n ¼j V j, m ¼j A j. G will be assumed simple and directed. cðaÞ
is the total capacity of the arc a 2 A. Let v 2 V be a node, we denote by AþðvÞ (resp. A�ðvÞ) the set of the arcs
terminating (resp. originating) at v. p ¼ ðv1; . . . ; vlÞ 2 V l is a path in G if for all k 2 f1; . . . ; l� 1g,
ðvk; vkþ1Þ 2 A.

I denotes the set of demands, N ¼j I j. Each demand i 2 I is characterized by a source si 2 V , a destination
di 2 V , a bandwidth requirement bi > 0 and an initial path pi. The initial routing scheme is assumed to be fea-
sible, that means that no arc capacity is exceeded by the initial demands.
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2.2. Evaluating the quality of a routing scheme

In telecommunication networks, the QoS parameters usually taken into account are bandwidth, delay, jitter
and packet loss rate (see for instance [18]). Due to QoS considerations, we are interested in using short routes,
which decrease the possible delay and packet loss rate, as well as jitter. But an operator has also to keep some
bandwidth available to face new flow arrivals, or traffic variations.

Let x be a multicommodity flow: xia 2 ½0; 1� is the fraction of demand i routed on arc a. Given an arc a 2 A,
let us denote by lðaÞ its load: lðaÞ ¼

P
i2I xiabi. Thus, l denotes the vector of arc loads. Consider the following

family of cost functions related to network resource utilization [4,8,15], defined for a P 0, a 6¼ 1:
Plea
opea
for a P 0 : F aðlÞ ¼
1

a� 1

X
a2A

ðcðaÞ � lðaÞÞ1�a
:

Arc loads are assumed to be less than arc capacities: 8a 2 A; lðaÞ 6 cðaÞ. Note that when a > 1, if lðaÞ ¼ cðaÞ
for some arc a, F aðlÞ is supposed to take an infinite positive value (þ1).

F a depends directly on the residual capacity of arcs and has to be minimized. If a ¼ 0, minimizing F 0 is equiv-
alent to maximizing the total network residual capacity (or, by dividing by the number of arcs, the average arc
residual capacity). This criterion is strongly related to the routing path lengths, since F 0ðlÞ can be written:
F 0ðlÞ ¼
X
i2I

bi

X
a2A

xia

( )
�
X
a2A

cðaÞ:
This criterion is unsatisfactory, since it provides no guarantee on the minimum residual capacity in the net-
work. On the contrary, a!1 leads to maximize this minimum residual capacity. For the sake of simplicity,
we assume that:
F1ðlÞ ¼ max
a2A

1

cðaÞ � lðaÞ :
This criterion seems more relevant, but gives no guarantee on the routing path lengths. a ¼ 2 is an inter-
mediate objective, related to the transfer delay [12]. It is intuitive that it will penalize both saturated arcs
and long paths. Observe that F 2 and F1 are correlated, since for any flow x: F1ðxÞ 6 F 2ðxÞ 6 mF1ðxÞ.

2.3. On the way to handle the classes of service

The highest class of service is the easiest to take into account, since none of the corresponding LSPs can be
rerouted. These LSPs can be very simply integrated to the inputs of the problem. From now on, they will be
ignored.

We would like to control the number of reroutings for each of the two other classes. Indeed, they corre-
spond to different rerouting operations. It is easy to see that there always exists an optimal rerouting scheme
following these successive chronological steps:

(i) break some low quality LSPs to free resources, then
(ii) reroute medium quality LSPs through ‘‘make-before-break’’, and finally

(iii) re-allocate low quality LSPs on their new paths.

Indeed, consider any feasible rerouting scheme of low and medium quality LSPs, called here-after ‘‘first
scheme’’. Let IL, resp. IM, denote the set of rerouted low, resp. medium, quality tunnels. It is possible to build
a new rerouting scheme following steps (i)–(iii): first break all tunnels of IL, then reroute tunnels of IM in the
same order than in the first scheme, and finally reroute tunnels of IL. The feasibility of step (ii) comes from the
fact that there are at least as many resources in the network as in the first scheme to perform medium quality
tunnels rerouting. Step (iii) is clearly feasible, since the final state reached by the first scheme is feasible.

As a first approach to this global problem, we could consider steps (i) and (ii) successively, performing the
following steps:
se cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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Rerouting optimization framework
Step 1:
Please cite this artic
opean Journal of O
ignore all of the low quality LSPs, and solve the rerouting problem

for medium quality LSPs;
Step 2:
 then, solve the rerouting problem for low quality LSPs.
For each of the two steps, the number of reroutings has to be bounded. This rerouting framework allows
more particular control of operations for medium quality LSPs. This is interesting, since the possible interrup-
tion time for low quality LSPs is related to the number of medium quality LSPs rerouted.

Note that Step 1 may impose some constraints on Step 2. For instance, the state reached by Step 1 may
require resources which imply the definitive deletion of some low quality LSPs. Nevertheless, this resolution
will probably provide a feasible global rerouting scheme.

This practical framework is not an optimal resolution, but it seems natural, and as we will see, it is yet very
difficult.

Finally, from a theoretical point of view, the difficulties induced by each of the two classes of service are
quite different. While rerouting the low quality LSPs is a problem very close to classical unsplittable multicom-
modity flow problems, the medium class introduces a new and very difficult problem. Thus, it is worth study-
ing the medium and low quality LSP rerouting problems separately.

3. Rerouting medium quality LSPs

In this section, we suppose that there are only medium quality LSPs in the network (cf. Step 1 of the above
rerouting optimization framework). Note that this is the framework of the papers [9–11]. The ‘‘make-before-
break’’ constraint leads to rerouting the tunnels one by one. That is, we must choose a sequence of rerouting
operations.

3.1. A mathematical program

Let s be the maximum number of performed reroutings, we introduce the set T ¼ f1; . . . ; sg. We denote by
F ðxsÞ the objective function to minimize, which depends only on the final state. The goal is to find a rerouting
sequence, of length at most s, optimizing this criterion. This Reroute Sequence Planning Problem (RSPP) can
be formulated with the following mathematical program, based on an arc-node formulation:
min F ðxsÞ

s:t:
X

a2AþðvÞ
xt

ia �
X

a2A�ðvÞ
xt

ia ¼
�1 if v ¼ si;

1 if v ¼ di;

0 otherwise;

8<: 8i 2 I ; v 2 V ; t 2 T ; ð1ÞX
i2I

xt
iabi 6 cðaÞ; 8a 2 A; t 2 T ; ð2Þ

xt
ia � xt�1

ia 6 pt
i; 8i 2 I ; a 2 A; t 2 T ; ð3ÞX

i2I

pt
i 6 1; 8t 2 T ; ð4Þ

xt
ia 2 f0; 1g; pt

i 2 f0; 1g; 8i 2 I ; a 2 A; t 2 T : ð5Þ
This model will be referred to as the basic formulation. We suppose that all data (capacity, bandwidth require-
ments) are integers. xt

ia ¼ 1 means that the demand i uses the arc a at step t (i.e. after the t first reroutings).
pt

i ¼ 1 if the demand i is rerouted at period t.
(1) and (2) are respectively the classical flow conservation and capacity constraints. Note that if the rero-

uted path has an arc in common with the original one, there is no need to double the capacity reservation cor-
responding to the considered demand [2].

Inequalities (3) give the evolution rule for x. Indeed, if for a given ði; tÞ 2 I � T , pt
i ¼ 0, then for all

a 2 A: xt
ia 6 xt�1

ia . This means that the demand i is not moved from its current path at step t. On the
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contrary, pt
i ¼ 1 makes it possible to reroute i at step t. Finally, (4) ensure that at most one demand is rerouted

at a time.
x0 denotes the initial state of routings in the network, and is assumed to be known.
Let X denote the set of feasible solutions of RSPP:
Plea
opea
X ¼ fðx; pÞ 2 f0; 1gsNm � f0; 1gsN jð1Þ; ð2Þ; ð3Þ and ð4Þg
Let convðX Þ denote the convex hull of X. Let us introduce the set ~X corresponding to the linear relaxation of
variables p:
~X ¼ fðx; pÞ 2 f0; 1gsNm � RsN
þ jð1Þ; ð2Þ; ð3Þ and ð4Þg
Lemma 1. convð~X Þ ¼ convðX Þ.

Proof. Let ðx; pÞ 2 eX . We prove that if p is not integral, then ðx; pÞ is not an extreme point of convðeX Þ.
Constraints (4) imply that pt

i 6 1. Suppose that there exists ði0; t0Þ 2 I � T such that 0 < pt0
i0 < 1. Then,

because of (4), for all i: pt0
i < 1. As x 2 f0; 1gsNm, (3) implies that for all ði; aÞ, xt0

ia ¼ xt0�1
ia . Let us now consider

pþ and p� equal to p, except: p�t0
i0 ¼ pt0

i0 � e (e > 0). If
P

i2Ip
t0
i < 1, e is taken such that p�t0

i0 P 0 andP
i2Ip

�t0i 6 1. Then, ðx; pþÞ 2 eX and ðx; p�Þ 2 eX , and ðx;pÞ ¼ ½ðx; pþÞ þ ðx; p�Þ�=2.
If now

P
i2Ip

t0
i ¼ 1, it is sufficient to choose arbitrarily another index i1 6¼ i0 such that pt0

i1 > 0. Then, p� is
changed by imposing also: p�t0

i1 ¼ pt0
i1 � e to guarantee

P
i2Ip

�t0
i ¼ 1. e has to be chosen to ensure p�t0i1 P 0.

As before, ðx; pþÞ and ðx; p�Þ define feasible solutions of RSPP, and ðx; pÞ ¼ ½ðx; pþÞ þ ðx; p�Þ�=2.
Then, it is proved that any non-integral ðx; pÞ is not an extreme point of convðeX Þ. Then, any extreme point

of convðeX Þ is in X, that ensures: convðeX Þ � convðX Þ. As clearly convðeX Þ � convðX Þ, the result holds. h

Hence, the extreme points of convðX Þ and convðeX Þ are exactly the same. Thus, when solving the problem
with a branch-and-bound algorithm relying on a simplex algorithm, which always provides basic solutions,
integrality constraints on p can be relaxed: the integrality of x will imply that of p in the obtained solution.
As a consequence, we are led to focus theoretically on the integrality of variables xia.

In the proposed model, it is possible to reroute the same demand several times. This allows us to reach better
configurations on heavily loaded networks. Consider for example the following simple case, where each arc rep-
resents a path in the network. C denotes the minimum capacity along each path, and b is the traffic of demands:

To reach the right-hand state from the left-hand one, and thus to avoid the congestion of a link, it is nec-
essary to reroute the demand of traffic b = 2 twice. Then, we need more than N = 2 reroutings to obtain the
optimal solution.

To finish with this general presentation of the model, observe that the sequential aspect is strongly related
to the network load. Indeed, if the network is not too loaded, any rerouting order will be feasible. The rero-
uting of medium quality LSPs is then equivalent to that of low quality ones, at least from a mathematical
model point of view. This will be more precisely explained in Section 4.3.

3.2. Complexity

Lemma 2. Consider the objective function F 0. Suppose that s P N=2, then RSPP is NP-hard even for networks

with three nodes and three arcs.
se cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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Proof. Consider the graph below:

Suppose that the two right-hand arcs have the same capacity c1 ¼
P

i2I bi, and that the left-hand arc has a

capacity c2 ¼ c1=2. Suppose also that all of the N demands are initially routed on the two right-hand arcs. The
optimal rerouting configuration is obtained by rerouting the maximum amount of traffic on the single arc
ðs; dÞ. Since s P N=2, the question is: is there a rerouting set I 0 	 I such that j I 00 j6 s and

P
i2I 0bi ¼ c2? This

problem is exactly the problem PARTITION [7]. Indeed, since s P N=2, the cardinality condition is not
constraining: either I 0 or I n I 0 will satisfy it. h

Lemma 3. Consider the objective function F 2. Suppose that s P N=2, then RSPP is NP-hard even for networks

with four nodes and four arcs.

Proof. Consider the network graph below:

All arcs are assumed to be of capacity c ¼
P

i2I bi. Suppose that s P N=2 and that all of the N demands are

initially routed on one of the two paths from s to d. We know that for any solution x, F 2ðxsÞP 4 
 2=c ¼ 8=c.
This value is obtained if, and only if, all arcs are exactly half-loaded.

The question is: is there any rerouting sequence such that F 2ðxsÞ ¼ 8=c? A subset I 00 	 I such that j I 0 j6 s
and

P
i2I 0bi ¼ c=2 has to be found. As before, the cardinality condition is not constraining, and we obtain the

problem PARTITION. h
Lemma 4. Consider the objective function F1. Suppose that s P N=2, then RSPP is NP-hard even for networks

with three nodes and three arcs.

Proof. Consider the network graph already used in the proof of Lemma 2, all arcs being of capacity
c ¼

P
i2Ibi. It is easy to see that F1ðsÞP 2=c. Then, the question is: is there any rerouting sequence such that

F1ðxsÞ ¼ 2=c? This is equivalent to finding a subset I 0 	 I such that j I 0 j6 s and
P

i2I 0bi ¼ c=2. As before, this
is the problem PARTITION. h
3.3. Link with the multicommodity flow problem

Given a mixed integer problem P, we call LðP Þ the problem P without integrality constraints. Some simple
notations are proposed to compare the optimal values of different problems. Given two problems P and P 0,
P � P 0 (resp. P � P 0, P  P 0) means that the optimal value of P is equal to (resp. not larger than, lower than)
that of P 0.
Please cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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Let us introduce the Unsplittable Multicommodity Flow Problem (UMFP) corresponding to RSPP:
Plea
opea
min F ðxÞ

s:t:
X

a2AþðvÞ
xia �

X
a2A�ðvÞ

xia ¼

�1 if v ¼ si;

1 if v ¼ di;

0 otherwise;

8>><>>: 8i 2 I ; v 2 V ;

X
i2I

xiabi 6 cðaÞ; 8a 2 A; t 2 T ;

xia 2 f0; 1g; 8i 2 I ; a 2 A;
Clearly, UMFP � RSPP and LðUMFPÞ �LðRSPPÞ. Let x be a feasible solution of LðUMFPÞ, we denote:
kxk1 ¼ maxi;a j xia j.

Proposition 1. Let ~x be a feasible solution of LðUMFP Þ. If k~x� x0k1 6 s=N , then there exists a feasible solution

ðx; pÞ of LðRSPPÞ such that xs ¼ ~x.

Proof. Let ~x be a feasible solution of LðUMFPÞ, we build ðx; pÞ period by period. Let t 2 T , suppose that xt�1

is a feasible flow (true for t = 1), different from ~x. Let us define:
xt ¼ xt�1 þ ktð~x� xt�1Þ ¼ ð1� ktÞxt�1 þ kt~x
with kt 2 ½0; 1�. As xt�1 and ~x are feasible flows, xt is also a feasible flow: constraints (1) and (2) are satisfied.
Consider now constraints (3):
8ði; aÞ 2 I � A : xt
ia � xt�1

ia 6 pt
i

() 8i 2 I : kt max
a2A
ð~xia � xt�1

ia Þ 6 pt
i

() kt
6 min

i2I

pt
i

maxa2Að~xia � xt�1
ia Þ

þ :
We can write this last line, since ~x 6¼ xt�1 and there necessarily exists ði; aÞ 2 I � A such that ~xia > xt�1
ia . We im-

pose now that for all i 2 I , pt
i ¼ pt. The previous condition becomes:
kt
6

pt

maxði;aÞ2I�Að~xia � xt�1
ia Þ

þ :
We denote Dt�1 ¼ maxði;aÞ2I�Að~xia � xt�1
ia Þ

þ. Let us consider: pt ¼ minf1=N ;Dt�1g, and
kt ¼
min 1=N ;Dt�1

� �
Dt�1

:

Observe that for all ði; aÞ 2 I � A: ~xia � xt
ia ¼ ð1� ktÞð~xia � xt�1

ia Þ. Then, if Dt�1 > 0: Dt ¼ ð1� ktÞDt�1 < Dt�1.
As long as Dt�1 P 1=N , this means: Dt ¼ Dt�1 � 1=N . Thus, there exists t0 such that Dt0

6 1=N . Then:
kt0þ1 ¼ 1, that implies: xt0þ1 ¼ ~x. Note that, since D0 ¼ k~x� x0k1 6 s=N , t0 6 s� 1.

Finally, we have to check that constraints (4) are satisfied by the considered vector p, that is
straightforward. Thus, we have given a way of building a solution x such that xs ¼ ~x. h

Corollary 1. If s P N , LðRSPPÞ �LðUMFPÞ.

More precisely, if ~x
 is an optimal solution of LðUMFPÞ and if s P N , there exists an optimal solution
ðx
; pÞ of LðRSPPÞ such that x
s ¼ ~x
. The proof of Proposition 1 indicates how to build x
 from ~x
. As a con-
sequence, if s P N , UMFP �LðRSPPÞ: UMFP provides a better lower bound on RSPP than the linear
relaxation LðRSPPÞ.
se cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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However, RSPP and UMFP have different values most of the time, whatever the value of s: it is often not
possible to reach the optimal flow configuration given by UMFP from a given initial state of RSPP. Consider
for instance the following ring example, where an arc is saturated (not optimal for UMFP), but no rerouting is
possible (consider that each arc represents a path in the network):

Furthermore, although it has been proved unnecessary to consider s > N when dealing with LðRSPPÞ, this
is not the case for RSPP. Indeed, let us call an instance of RSPP a set ðG; c; b; x0Þ, where G is the graph of the
network, c the capacity vector, b the bandwidth requirements vector corresponding to demands, and x0 the
initial paths used by demands. Given an instance of RSPP, a relevant notion is the minimum number of rerou-
tings which have to be performed before obtaining the best possible configuration. Let us denote by �s this
(finite) number of steps, called the optimal rerouting horizon. Observe that in the previous ring example,
�s ¼ 0 (no possible rerouting).

Lemma 5. There exist instances of RSPP for which the optimal rerouting horizon is at least 3N � 1: �s P 3N � 1.

Proof. Consider the following example, with N = 2. Bottom arcs are saturated. At least 3N � 1 ¼ 5 moves are
needed to invert the two routing paths:

This example is used as a basis (sub-network) to build the following instance with N P 2 demands:
Each demand i 2 f1; . . . ;N � 1g has a bandwidth requirement b ¼ 3, and the demand number N has a
i

bandwidth requirement bN ¼ 2. Then, 3N � 1 reroutings are needed to avoid the saturation of any arc. h

In fact, it seems that it is not possible to bound �s with a function of N only (contrary to the linear case).
All of these observations highlight the deep difference between UMFP and RSPP, although LðUMFPÞ and

LðRSPPÞ are quite close. As a consequence, the relaxation LðRSPPÞ needs to be strengthened, since it is the
base for many solution approaches (e.g., branch-and-bound and approximation algorithms). With this goal,
we propose some valid inequalities which could be added to the problem.
Please cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
opean Journal of Operational Research (2007), doi:10.1016/j.ejor.2007.04.016
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3.4. Additional inequalities

3.4.1. Valid inequalities

LðRSPPÞ has been shown to be very close to LðUMFPÞ, although RSPP and UMFP appear to be very
different problems (Section 3.3). Then, more valid inequalities are strongly needed to reinforce the linear relax-
ation of RSPP.

Lemma 6. The following symmetrical evolution inequalities are valid for X:
Plea
opea
xt
ia � xt�1

ia P �pt
i; 8i 2 I ; a 2 A; t 2 T ð6Þ
(In other words, we have: j xt
ia � xt�1

ia j6 pt
i.) Note that inequalities (6) strengthen the linear relaxation of RSPP.

Indeed, consider the following example with only one demand from s to d with a bandwidth requirement
b = 1, and suppose that p ¼ 1=4:

We see that this feasible solution of LðRSPPÞ is such that: x1 � x0 ¼ 1=2� 1 ¼ �1=2 < �p. Note that the
sd sd

previous integrality constraints relaxation result (Lemma 1) still applies.
The following valid inequalities, called rerouting capacity inequalities, are introduced:

Lemma 7. For any ðx; pÞ 2 X :
8ða; tÞ 2 A� T ;
X
i2I

bi maxfxt�1
ia ; xt

iag 6 cðaÞ: ð7Þ
Proof. Let ðx; pÞ 2 X and ða; tÞ 2 A� T . If for all i 2 I , xt
ia ¼ xt�1

ia , then (7) is equivalent to the capacity con-
straint (2) corresponding to ða; tÞ. If there exists i 2 I such that xt

ia > xt�1
ia , then for all j 6¼ i, xt

ja ¼ xt�1
ja . Thus, (7)

is equal to the capacity constraint corresponding to ða; tÞ. The result is similar in the last case (xt
ia < xt�1

ia ). h

As a consequence, for any ða; tÞ 2 A� T , and for any partition ðI1; I2Þ of I:
P

i2I1
xt�1

ia bi þ
P

i2I2
xt

iabi 6 cðaÞ.
Then, for a given non-integral solution ~x of LðRSPPÞ, the most violated of these linear inequalities can be
obtained in linear time with I1 ¼ fi 2 I j ~xt�1

ia > ~xt
iag and I2 ¼ fi 2 I j ~xt�1

ia 6 ~xt
iag.

Note that if only one demand is rerouted at period t, then for any arc a, for all i 6¼ j: ðxt�1
ia �

xt
iaÞðxt�1

ja � xt
jaÞ ¼ 0. Let us show that a fractional point violating an inequality (7) also violates this condition:

Lemma 8. Let ðx; pÞ be a feasible solution LðRSPPÞ. If ðx; pÞ violates the inequality (7) for ða; tÞ 2 A� T , then

there exists ði; jÞ 2 I2 such that: ðxt�1
ia � xt

iaÞðxt�1
ja � xt

jaÞ < 0.

Proof. Let ða; tÞ 2 A� T , suppose that:
P

i2I bi maxfxt�1
ia ; xt

iag > cðaÞ. As capacity constraints (2) are satisfied
for ða; tÞ:

P
i2Ibiðmaxfxt�1

ia ; xt
iag � xt

iaÞ > 0. This means that there exists i 2 I such that: maxfxt�1
ia ; xt

iag > xt
ia.

Thus: xt�1
ia > xt

ia. Similarly, as capacity constraints are satisfied for ða; t � 1Þ, there exists j 2 I such that
xt�1

ja < xt
ja. h

Unfortunately, the reciprocal result is not true. Another more practical illustration of the impact of these
inequalities can be provided. Consider LðRSPPÞ with the additional inequalities (7). If a is a saturated arc at
period t, no (fractional) flow can be rerouted on a at t + 1. For example, in the ring instance of Section 3.3, no
rerouting is possible. As a consequence, when taking into account inequalities (7), Proposition 1 is fortunately
no more valid.

Cover inequalities can be associated with these additional knapsack constraints (see e.g. [14,16]). C � I is a
cover of an arc a 2 A if

P
i2Cbi > cðaÞ. C is called a minimal cover of a if for any element j 2 C, C n fjg is not a
se cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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cover of a. Given a cover C of a, and due to rerouting constraints (7), the following rerouting cover inequalities

are valid for RSPP:
Plea
opea
8t 2 T ;
X
i2C

maxfxt
ia; x

t�1
ia g 6 jCj � 1: ð8Þ
Minimal cover inequalities are known to be the strongest ones. Let t 2 T . Given a fractional solution x of
LðRSPPÞ, the most violated rerouting cover inequality can be obtained by the resolution of the following
knapsack problem (considering that data b and c are integral):
min
X
i2I

yið1�maxfxt
ia; x

t�1
ia gÞ

s:t:
X
i2I

yibi P cðaÞ þ 1;

yi 2 f0; 1g; 8i 2 I :
Any cover can be extended into EðCÞ ¼ C [ fi 2 I j maxj2Cbj 6 big. Then, the following inequalities are stron-
ger for RSPP:
8t 2 T ;
X

i2EðCÞ
maxfxt

ia; x
t�1
ia g 6 jCj � 1:
Extended cover inequalities are proved to be strong constraints for knapsack problems [6,16]. (This is a special
and easy-to-perform case of lifting. For an exact generation scheme, see [6].)

3.4.2. On the interest of multiple solutions

The basic model can have many extreme optimal solutions. To reduce their number, the following con-
straints could be introduced:
X

i2I

ptþ1
i 6

X
i2I

pt
i; 8t 2 T n fsg: ð9Þ
Thus, if no rerouting occurs at period t, none will occur at period t + 1. Note that to consider this constraint
does not impact the size of the problem, since inequalities (4) can now simply be replaced by the single con-
straint:

P
i2Ip

1
i 6 1.

Another reinforcement of the basic model lies in forbidding a solution to move the same demand on two
consecutive periods:
pt
i þ ptþ1

i 6 1; 8i 2 I ; t 2 T n fsg: ð10Þ
It remains possible to relax integrality constraint for p with these new constraints (9) and (10) (cf. Lemma 1).
Both inequalities reduce the size of the search space. Nevertheless, computational experiments have shown
that they do not help the optimal solution process. Indeed, when performing branch-and-bound, it is partic-
ularly important to have good feasible solutions (i.e. upper bounds) as soon as possible. Keeping only con-
straints (4) in the model, optimal solutions are more numerous and are found faster during the process:
this accelerates the optimal solution process, and/or provides good feasible solutions faster. This appeared
to be of particular importance in our practical tests.

4. Rerouting low quality LSPs

In this section, we suppose that there are only low quality LSPs in the network.

4.1. The associated mathematical program

As with medium quality, we impose an upper bound r on the maximum number of reroutings to perform.
Let us introduce the Reroute Planning Problem (RPP):
se cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
n Journal of Operational Research (2007), doi:10.1016/j.ejor.2007.04.016
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Plea
opea
min F ðxÞ

s:t:
X

a2AþðvÞ
xt

ia �
X

a2A�ðvÞ
xia ¼

�1 if v ¼ si;

1 if v ¼ di;

0 otherwise;

8<: 8i 2 I ; v 2 V ; t 2 T ; ð11Þ

X
i2I

xiabi 6 cðaÞ; 8a 2 A; ð12Þ

xia � x0
ia 6 pi; 8i 2 I ; a 2 A; ð13ÞX

i2I

pi 6 r; ð14Þ

xia 2 f0; 1g; pi 2 f0; 1g; 8i 2 I ; a 2 A: ð15Þ

This mathematical program appears to be easier than RSPP. In particular, it has fewer variables and fewer con-
straints. Nevertheless, it remains NP-hard, since all of the results of Section 3.2 can directly be applied to RPP.

As with RSPP, integrality constraints on p can be relaxed (cf. Lemma 1).

4.2. Valid inequalities

Among the results of 3.4, we can adapt Lemma 6:

Lemma 9. The following symmetrical evolution inequalities are valid for RPP:
xia � x0
ia P �pi; 8i 2 I ; a 2 A; ð16Þ
As before, these cuts strengthen efficiently the initial model.

Let us denote for all i 2 I : A1
i ¼ fa 2 A j x0

ia ¼ 1g. Hence, A1
i is the set of arcs used by the initial routing of

demand i. Consider the following reformulation RPP’ of RPP, obtained by replacing inequalities (13) with
inequalities (16) on a restricted set of arcs:
min F ðxÞ

s:t:
X

a2AþðvÞ
xt

ia �
X

a2A�ðvÞ
xia ¼

�1 if v ¼ si;
1 if v ¼ di;
0 otherwise;

8<: 8i 2 I ; v 2 V ; t 2 T ;X
i2I

xiabi 6 cðaÞ; 8a 2 A;

xia � x0
ia P �pi; 8i 2 I ; a 2 A1

i ;X
i2I

pi 6 r;

xia 2 f0; 1g; pi 2 f0; 1g; 8i 2 I ; a 2 A:

ð17Þ
Lemma 10. RPP 0 and RPP are equivalent. Moreover, a feasible solution of LðRPP0) is a feasible solution of

LðRPPÞ.

Proof. First observe that any feasible solution ðx; pÞ of LðRPP0Þ satisfies in fact: 8ði; aÞ 2 I�
A; xia � x0

ia P �pi. Indeed, the inequality is obvious on arcs where x0
ia ¼ 0. As a consequence, RPP 0 and

RPP have exactly the same set of 0–1 feasible solutions, and thus they are equivalent.
Consider now a feasible solution ðx; pÞ of LðRPP0Þ. Let us check that ðx; pÞ satisfies constraints (13).

Suppose that this is not the case: there exists ði; aÞ 2 I � A with: xia � x0
ia > pi. This occurs only if: x0

ia ¼ 0, and
so: xia > pi. But from inequality (17), we know that an amount of traffic at most pi has been removed from the
initial path. Thus, there would be some traffic creation in the network, and the flow conservation would not be
satisfied (contradiction). h

Hence, LðRPP0Þ is a stronger relaxation of RPP than LðRPPÞ. Moreover, the size of RPP’ is smaller than
that of RPP. As a consequence, in practice, inequalities (17) should be used instead of (13).
se cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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4.3. Link with make-before-break rerouting

We first have to observe that if medium quality LSPs are not too numerous in the network, their rerouting
plan can be obtained in solving RPP instead of RSPP:

Lemma 11. Suppose that
Plea
opea
8a 2 A; cðaÞP
X
i2I

bi: ð18Þ
Then an optimal solution to RPP provides an optimal solution to RSPP.

Proof. Indeed, under condition (18), any rerouting order is feasible: we just have to decide the set of demands
which are to be moved. h

As a consequence, under condition (18), RSPP can be replaced by RPP. Within the global optimization
framework of Section 2.3, the result can be adapted by considering the set IL of low quality LSPs, and the
set IM of medium quality LSPs. If condition (18) holds for IM (ignoring demands of IL), i.e. if for any arc
a: cðaÞP

P
i2IM

bi, then only model RPP has to be used, first to reroute demands of IM (Step 1), and then
for demands of IL (Step 2).

Remark. It has been underlined that LðRSPPÞ was a particularly weak relaxation of RSPP. An approach
could be to consider other relaxations instead of linear ones (for instance, lagrangian relaxations). But the
relaxation of capacity constraints leads in fact to solve RPP. The relaxation of rerouting constraints leads to
an even weaker problem, UMFP. As both RPP and UMFP are NP-hard, there is little hope to obtain
computationally efficient bounds from these constraint relaxations. Roughly speaking, we could state the
following (non-rigorous) relations: LðUMFPÞ �LðRPPÞ �LðRSPPÞ � UMFP � RPP � RSPP.
4.4. On the number of necessary reroutings

For RSPP, it has been shown that the number of reroutings required to obtain the best possible network
state could be very large (possibly more than 3N � 1). This is not the case for RPP: it is clear that if r ¼ N ,
RPP is equivalent to UMFP, and consequently reaches its best possible value. Nevertheless, an interesting
question is to know how many reroutings are necessary to ‘‘sufficiently’’ improve the solution.

Lemma 12. There exist instances of RPP for which r ¼ N reroutings are required to decongestion a link in the

network.

Proof. Consider the following network:

with N � 1 demands of traffic b = 2 initially routed on arc ðA;CÞ, and one demand of traffic b ¼ 2N initially

routed from A to C via ðA;BÞ and ðB;CÞ. Thus, arcs ðA;BÞ and ðA;CÞ are saturated. In this example, r ¼ N
reroutings are necessary to obtain a network without any saturated arc: all of the demands have to be
rerouted. h

As a consequence, when considering objective functions F1 or F 2, there exist instances for which the objec-
tive value is unchanged until we move all of the N tunnels. Nevertheless, in realistic instances, numerical exper-
iments will show that the rerouting of only a fraction of the tunnels is often sufficient to reach very good states
(see Section 5.3).
se cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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5. Numerical experiments

5.1. Instances description and resolution method

Five synthetic instances have been designed to perform numerical tests. Each of them is characterized by a
network topology, generated with the software Tiers (see [5]), of 10 nodes and about 40 arcs of same capacity
c. The sixth instance relies on the NSFnet network topology, which acted as an internet backbone in the Uni-
ted States (14 nodes, 44 arcs). As with the five other networks, all arcs are supposed to have the same capacity
c. The figures of Table 1 give a description of the underlying undirected graphs, then transformed into bidi-
rected networks (that is, if the arc ðu; vÞ exists, ðv; uÞ also exists).

On each network, successive LSP arrivals and removals are randomly simulated to obtain the initial net-
work state to be improved through reroutings. The tunnel sizes are between c=10 and c=3, that leads to dif-
ficult combinatorial instances. Other details on the simulation process are not given here, the obtained
instances are described in Table 2. Note that the considered networks are quite heavily loaded.

To assess the impact of each of the proposed inequalities, problems have been solved in a linear framework.
Thus, a piecewise linear approximation of the objective F 2 has been defined, cf. Fig. 1. We have considered
R ¼ 1=4 
mina2AcðaÞ.

All tests are performed using the branch-and-bound framework of Cplex 9.0 on the arc-node models pre-
sented above (all automatic cut generations are set off). The computer runs an Intel(R) Xeon(TM) processor
2.8GHz with 3Gb of RAM. The solution time limit is 30 minutes (CPU time). Indeed, one hour appears as the
Table 2
Topologies of instances
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Table 1
Initial network states description

Instance

1 2 3 4 5 6

Number of LSPs 71 48 58 82 71 70
Minimal arc residual capacity 0 0 0 0 0 0
Average arc load 71% 74% 69% 82% 76% 82%
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typical duration which can be devoted in practice to calculations before performing rerouting in the network.
According to the global framework described in Section 2.3, both problems RSPP and RPP have to be suc-
cessively solved in practice. This motivated a time limit of 30 minutes for each problem.

5.2. Solving RSPP to optimality

In this section, we suppose that all the tunnels are medium quality ones. Let us recapitulate the different
potential strengthenings proposed for RSPP:

• (I): integrality constraints relaxation on p (cf. Lemma 1),
• (S): symmetrical evolution inequalities (cf. Lemma 6),
• (C1): valid rerouting capacity inequalities (7),
• (C2): valid rerouting cover inequalities (8).

Moreover, in the result tables, the symbol / denotes the absence of any modification of the initial model
RSPP. With option (S), all symmetrical evolution inequalities are added to the model at the root node. With
option (C1) or (C2), dynamic cut generation is performed at each node of the branch-and-bound process.

From a computational point of view, RSPP appears to be a very difficult problem. For all of the considered
instances, whose sizes are small from a practical point of view, we have not been able to obtain optimal solu-
tions for more than 5 reroutings (s = 5) within the time limit imposed (30 minutes). In the following tables,
when the time limit has been reached without having proved optimality of the current solution, the proved
gap to optimal value is indicated. Note that these final gaps remain often quite large. Furthermore, the con-
vergence was very slow. Then, solving more instances to optimality would have required a substantial increase
in solution time.

In the following, when numerical comparisons are performed between different models, only cases solved to
optimality are taken into account.

Table 3 enables us to compare models with and without relaxation of integrality constraints on p. Surpris-
ingly, considering these variables as non-integral does not help the solution process. It has been observed that
the solution times of model (I) are about 20% higher, on average, than those of the basic model /. This can be
explained by considering that branching on rerouting variables pt

i provides very constrained sub-problems. In
particular, pt

i ¼ 1 implies automatically that pt
j ¼ 0 and xt

j ¼ xt�1
j , for all j 6¼ i. It appears in practice that

branching on these variables is beneficial.
The interest of adding symmetrical evolution inequalities (S) can be assessed from Table 3 also. This option

generally improves the solution times, which are decreased by more than 40% on average compared to the
basic model. Note that in half of the cases, it provided an optimal solution while model / failed (instances
4, 5 and 6). However, it failed to prove optimality for instance 2 with s = 5.
Please cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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Table 3
Solution times in seconds, or gaps (%) when time limit is reached, for RSPP

Instance Model Number of reroutings s

1 2 3 4 5 6

1 / 6 82 627 1589 7.44%
(I) 7 59 709 0.10%
(S) 2 24 239 1216 11.21%

2 / 2 29 139 241 1001 18.17%
(I) 2 26 142 258 0.01%
(S) 1 28 100 169 9.23%

3 / 5 64 197 647 10.75%
(I) 4 87 271 895 11.65%
(S) 2 20 113 374 13.83%

4 / 7 47 394 7.40%
(I) 9 51 423 7.15%
(S) 1 24 98 934 6.60%

5 / 7 52 435 6.90%
(I) 9 62 510 6.12%
(S) 0 28 175 687 10.95%

6 / 23 165 21.23%
(I) 27 258 18.85%
(S) 6 75 479 5.51%

Table 4
Number of computation nodes, or gaps (%) when time limit is reached, for RSPP

Instance Model Number of reroutings s

1 2 3 4 5

1 (S) 27 140 1236 4287 7.44%
(S) + (C1) 9 336 3.54%
(S) + (C2) 10 136 4.15%

2 (S) 4 235 1045 841 18.17%
(S) + (C1) 15 137 610 10.51%
(S) + (C2) 9 93 336 3.14%

3 (S) 20 212 1032 2129 10.75%
(S) + (C1) 18 347 940 12.17%
(S) + (C2) 18 100 364 9.80%

4 (S) 12 119 355 1645 7.40%
(S) + (C1) 11 82 327 8.50%
(S) + (C2) 10 72 246 8.40%

5 (S) 8 219 969 2884 6.90%
(S) + (C1) 5 199 777 11.24%
(S) + (C2) 5 134 522 12.57%

6 (S) 18 151 858 21.23%
(S) + (C1) 0 80 1.01%
(S) + (C2) 0 29 16 3.65%
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Table 4 highlights the impact of rerouting cuts (C1) and (C2). In each case, these cuts are dynamically gen-
erated by CPLEX at each node of the branch-and-bound tree. Note that the exact separation of the most vio-
lated cover cut would require us to solve a knapsack problem; to avoid this, we have chosen to generate cuts
(C2) in a heuristic way, by using the well known greedy algorithm [14]. The table reports the number of com-
putation nodes performed in the branch-and-bound tree when solving RSPP to optimality. Most of the time,
the use of rerouting cuts decreases greatly the number of branch-and-bound nodes; on average, this decrease is
of about 30% for (C1), and about 65% for (C2). This shows that the proposed inequalities effectively cut the
feasible polyhedron for the considered instances.
Please cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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Nevertheless, the solution times are generally increased by the cut generation process. This explains why
many instances are not solved to optimality within the time limit when adding cuts, while the same
instances are solved without any cuts. Moreover, the efficiency of these rerouting cuts is strongly dependent
on the considered instances. As stated in Sections 3.1 and 4.3, if networks are not too loaded, RSPP can in
fact be solved with no regard to rerouting order. Thus, in such a case, rerouting cuts are obviously of no
interest.
5.3. Solving RPP to optimality

The six test instances described in Section 5.2 have been used also for RPP. Here, it is assumed that all the
tunnels are low quality ones. As before, (I) denotes the relaxation of integrality constraints and (S) the taking
into account of symmetrical evolution inequalities (17) instead of (16) in the model. RPP appears much eas-
ier to solve than RSPP. Table 5 presents the solution times for models / (basic model with no modification),
(I) and (S). As with RSPP, the relaxation of integrality constraints on p decreases the performance, since
solution times are increased by about 40% on average. By contrast, model (S) leads to large improvements
in resolution, since times are decreased by about 90%. This model has enabled us to solve many instances
unsolved with /. Furthermore, when the instances are not solved to optimality with option (S), the gaps
are small. Even though the observed convergence is very slow, this means that good feasible solutions are
proved to be available.

Figures of Table 6 show the evolution of the objective value according to the number of reroutings per-
formed. It appears that the objective value can be improved a lot by rerouting only a small fraction of the
tunnels. For example, rerouting only 15% of the total number of tunnels in instance 1 leads to a near-optimal
network state.
5.4. Heuristics for RSPP

Finally, we focus on heuristics to solve RSPP. Indeed, RPP can be quite easily treated through heuristics
classically used for unsplittable multicommodity flow problem (see [13]). This is not the case for RSPP; in par-
ticular, the weakness of its linear relaxation makes most of the classical approaches ineffective (cf. Section 3.3).
Table 5
Solution times in seconds, or gaps (%) when time limit is reached, for RPP

Instance Model Number of reroutings r

1 2 3 4 5 6 7 8 9 10 11 12

1 / 13 33 81 131 291 1772 889 2.38%
(I) 14 52 97 206 363 1722 1.79%
(S) 2 3 6 14 21 84 60 1172 36 164 422 0.43%

2 / 4 6 22 11 19 15 48 281 376 854 1.12%
(I) 3 8 33 19 16 29 103 213 282 2.21%
(S) 0 2 4 2 3 5 5 59 70 159 392 840

3 / 5 21 47 104 543 1173 3.56%
(I) 9 23 49 141 803 2.88%
(S) 1 2 3 7 31 60 309 198 627 0.68%

4 / 6 22 73 195 408 595 1550 4.39%
(I) 9 24 103 336 818 1572 7.04%
(S) 1 2 6 10 19 41 51 101 77 291 475 296

5 / 7 24 72 202 594 759 2.65%
(I) 9 28 88 333 1355 6.60%
(S) 0 3 11 12 28 39 144 243 515 745 3.28%

6 / 28 90 79 113 433 556 1322 10.69%
(I) 35 100 85 184 663 1721 13.47%
(S) 2 9 5 7 23 49 70 177 354 676 1341 1.06%
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Table 6
Comparison of RPP and UMFP optimal values
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The heuristics proposed below rely on shortest path computations, and are somewhat natural for MPLS net-
work managers, used to performing Constrained Shortest Path First (CSPF) calculations.
5.4.1. Definition

Let x be a multicommodity flow. For each arc a 2 A, denoting lðaÞ ¼
P

i2I xiabi the arc load, let faðlðaÞÞ be a
positive cost associated to the multicommodity flow x on arc a. We assume that fa is increasing with arc load.
Denoting F ðxÞ the total cost of x, we define: F ðxÞ ¼

P
a2AfaðlðaÞÞ (cf. Section 2.2).
Please cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
opean Journal of Operational Research (2007), doi:10.1016/j.ejor.2007.04.016
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Rerouting heuristic
Step 0:
Please cite this article in press as: O
opean Journal of Operational Res
Set i = 1, k = 0.

Let w be a permutation of I.
Step 1:
 Remove the demand wðiÞ from the network;

let x0 be the new corresponding flow.
Step 2:
 For each arc a 2 A, compute a weight wa ¼ faðx0Þ.

Step 3:
 Route the demand wðiÞ according to the shortest path for weights wa;
if the new routing path is different from the previous one, k = 0;

else, k  k þ 1.
Step 4:
 If k ¼ 2N , STOP;

else:
if i 6 N � 1, set i iþ 1; if i ¼ N :

possibly change the permutation w;

set i = 1;
go to Step 1.
The natural idea motivating this heuristic is to re-establish demands on paths where more resources are
available. This algorithm is not a descent method, since it is not ensured that each rerouting performed leads
to a better network cost. The theoretical convergence of the algorithm is not guaranteed, since cycling can
occur. This is especially the case when multiple shortest paths occur in Step 3. This difficulty can be avoided
very simply by bounding the number of reroutings performed (that is consistent with the operational
concerns).

Some little improvements could be added to this framework. For instance, the obtained rerouting sequence
may possibly be shortened if some useless sub-sequences are detected (they could be identified through multi-
ple reroutings of a same demand). Nevertheless, in our trials, it did not seem to be the case.

Three versions of the heuristic have been tested. In version A, the demands are ordered by non-increasing
bandwidth requirements. This means that wðiÞ is the ith biggest LSP to reroute (in other words:
wðiÞ < wðjÞ ) bi P bj). In version B, the demands are ordered by non-decreasing bandwidth requirements:
wðiÞ is the ith smallest LSP to reroute. Finally, version C considers demands sorted by non-increasing resource
consumption. The resource consumption of a demand i routed in the network through a path of length li is
defined as bi:li. In this latter case, the order w is updated at each Step 4.

Thus, heuristic A (resp. B) leads to reroute big (resp. small) demands first, and heuristic C reroutes first
demands which use more resources than others. Note that heuristics A and C are likely to provide similar results.

The main advantages of this heuristic rerouting framework are its simplicity and its scalability: since it relies
on shortest path computations, the method can be applied easily to very large instances.

5.4.2. Solutions characteristics

In all our tests, the proposed heuristics converged without imposing a maximum number of performed
reroutings. Thus, the resulting rerouting sequences cannot be improved in continuing the process any longer.

The figures of Table 7 represent the evolution of the objective function value, for each of the three heuris-
tics, according to the number of reroutings performed (heuristic A is denoted by ‘‘max’’, B is denoted by
‘‘min’’, and C is denoted by ‘‘maxfree’’). The optimal solutions available are also drawn for comparison pur-
pose. It seems difficult to say that one of the heuristics is better than the others. Depending on instances, each
method can provide interesting solutions. In any case, as the computing times are very short, it is not a prob-
lem to perform all of the three heuristics and to choose afterwards the best solution.

These heuristic solutions are interesting, since, most of the time, they enable us to reach better states than
those obtained through optimal resolution. However, the corresponding rerouting processes are quite long,
between 18 and 38 reroutings for the tested instances. It may reasonably be thought that similar states can
be reached with a shorter rerouting process if optimal resolution could be performed. As an illustration,
. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
earch (2007), doi:10.1016/j.ejor.2007.04.016
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Comparison of heuristic and optimal solutions to RSPP
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instances 1 and 2 show that rerouting optimally only 4 or 5 tunnels leads to similar quality solutions than rero-
uting heuristically more than 15 tunnels.
6. Conclusion

This paper studies the problem of rerouting tunnels in an MPLS network in order to improve the resource
utilization. Three different classes of tunnels have been considered, depending on the quality of service desired.
Please cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
opean Journal of Operational Research (2007), doi:10.1016/j.ejor.2007.04.016
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Low quality tunnels can be broken and re-established afterwards. Intermediate quality tunnels can be rero-
uted, but only through ‘‘make-before-break’’; this process requires to create the new routing tunnel before
breaking the current one. In this case, the service is only very slightly impacted. Finally, high quality tunnels
cannot be moved at all.

A global rerouting framework has been proposed, in which low and intermediate quality tunnels can be
considered independently. Intermediate quality tunnel rerouting, in heavily loaded networks, leads to an ori-
ginal and very difficult integer linear program. Its complexity is analyzed, in particular through its linear relax-
ation, which is proved to be very weak. Some improvements are brought to the initial model and tested on
small numerical examples. Nevertheless, this problem remains very difficult to solve to optimality.

Low quality tunnel rerouting is associated to an easier integer program, close to the classical unsplittable
multicommodity flow problem. Some of the theoretical results obtained for medium quality tunnels are
adapted to this case. On the other hand, medium and low quality rerouting problems are proved to be math-
ematically equivalent under specific but realistic conditions.

Finally, some numerical results show the computational interest of most of the strengthening inequalities
proposed for both problems. As medium quality rerouting appears so particular and difficult, some natural
heuristics are defined and compared to the optimal resolution. They often allow us to obtain good network
states, but require a large number of reroutings. This shows the interest of optimal solutions for difficult
instances, to keep the number of reroutings reasonably low while reaching good configurations.
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